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ABSTRACT
Fast model updates for unseen tasks on intelligent edge devices
are crucial but also challenging due to the limited computational
power. In this paper, we propose MetaLDC, which meta trains brain-
inspired ultra-efficient low-dimensional computing classifiers to
enable fast adaptation on tiny devices with minimal computational
costs. Concretely, during the meta-training stage, MetaLDC meta
trains a representation offline by explicitly taking into account that
the final (binary) class layer will be fine-tuned for fast adaptation
for unseen tasks on tiny devices; during the meta-testing stage,
MetaLDC uses closed-form gradients of the loss function to enable
fast adaptation of the class layer. Unlike traditional neural networks,
MetaLDC is designed based on the emerging LDC framework to en-
able ultra-efficient inference. Our experiments have demonstrated
that compared to SOTA baselines, MetaLDC achieves higher accu-
racy, robustness against random bit errors, as well as cost-efficient
hardware computation.
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1 INTRODUCTION
Deep neural networks (DNNs) have become the backbone of intelli-
gent applications in a wide range of domains from computer vision
to natural language processing [1, 5, 23]. Meanwhile, compared to
cloud-based inference, on-device inference has numerous advan-
tages, including better privacy preservation and anytime inference
without relying on network connections. Nonetheless, despite the
recent progress [25, 33], directly running DNN inference and adapt-
ing the model to unseen tasks on the edge are still challenging due
to the conflict between high computational demand of DNNs and
the low resource availability of edge devices, especially tiny devices
such as microcontrollers and Internet-of-Things (IoT) devices.

In response to the excessive resource demand of DNNs, hyperdi-
mensional computing (HDC) has emerged as an alternative towards
efficient on-device inference [18]. The key idea of HDC is to encode
data into (binary) hypervectors each with dimensions of thousands
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or even more, and then perform cosine/Hamming distance sim-
ilarity for inference using bit-wise binary operations in parallel.
Owning to its hardware friendliness and efficiency, HDC classifiers
have been adopted to an increasingly broader range of inference
tasks for resource-constrained devices [6, 10].

Nonetheless, there are still fundamental limitations that prohibit
the applicability of HDC for tiny devices with extremely limited
resources. First, the orders of megabyte ofmemory required byHDC
to support its hyperdimensional data representation can be too
costly for tiny devices [11, 17]. Second, compared to today’s DNNs,
the HDC training process is extremely rudimentary (e.g., simply
taking average of the input data, plus some semi-blind heuristic
adjustments, without loss functions), resulting in low inference
accuracy. Last but not least, each HDC training process can only
fit into one data distribution, which means that HDC training does
not scale to a large number of tiny devices each having potentially
different distributions.

While the recent brain-inspired low-dimensional computing
(LDC) classifiers outperform HDC by utilizing ultra-low dimen-
sional vectors and principled training based on an equivalent neu-
ral network to improve the inference efficiency and accuracy [11],
it cannot support fast model adaptation to unseen tasks on tiny
devices. More concretely, LDC trains an individual model for each
device, and hence the total training cost can be labor-intensivewhen
there are many tiny devices deployed in heterogeneous environ-
ments each with a different data distribution [22]. Additionally, fast
adaption to unseen tasks with only a handful of data points presents
substantial challenges for tiny devices, due to their constrained com-
puting resources that prohibit traditional model updates based on
gradients and backpropagation. While some studies have proposed
to train a collaborative (DNN) model in a distributed manner to
facilitate knowledge transfer between edge devices [22], the com-
munication latency among edge nodes and complicated local neural
network computation make this approach still too expensive for a
tiny device.

In the presence of heterogeneous tiny devices each with a dif-
ferent data distribution, we propose MetaLDC, a new LDC-based
meta learning approach that achieves fast model adaptation to an
unseen task and ultra-efficient inference on tiny devices. Specif-
ically, MetaLDC meta trains an LDC-equivalent neural network,
in which the first few layers are non-binary values specifically for
LDC data encoding and the last layer has binary weights (denoted
by 𝜙) for classification. Crucially, given the difficulty in calculating
gradients and performing backpropagation over the entire LDC-
equivalent neural network on resource-constrained tiny devices, we
only treat the last layer 𝜙 as task-specific: the LDC data encoding
part is explicitly learned to fit heterogeneous distributions, while
only the classification layer 𝜙 is adapted using a simple closed-form
gradient expression to each tiny device for fast and inexpensive
model update with minimal on-device computational costs. Thus,
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Figure 1: Overview of MetaLDC. Our MetaLDC is based on the ultra-lightweight LDC network and composed of two stages:
meta-training and fast adaption. The meta parameter 𝜃 keeps learned knowledge from heterogeneous data distributions, while
the task-specific parameter 𝜙 is used to quickly adapt to unseen tasks from a new tiny device.

unlike the standard meta learning technique (e.g., MAML [12]),
MetaLDC meta trains the first few layers in the LDC-equivalent
neural network by explicitly considering that these layers will be
fixed without updates on tiny devices.

Our experimental results have empirically shown that MetaLDC
can significantly outperform state-of-the-art (SOTA) baselines in-
cluding SOTA HDC [19] and pretrained LDC model on both vision
and non-vision datasets in terms of accuracy, robustness against the
random bit errors on hardware, as well as cost efficiency including
energy consumption, latency and model size.

2 BACKGROUND
Hyper-dimensional computing (HDC): The HDC is a brain-
inspired, cognitive computing architecture built on a unique data
type, referred to as the hypervectors. The dimensionality of the
hypervectors can be from a thousand to tens of thousands. By ma-
nipulating these hypervectors, the HDC aims to perform cognitive
tasks via hardware-efficient operations like element-wise additions
and dot products.

In the general supervised classification based on HDC, the fea-
tures of the input sample would be encoded into hypervectors
F𝑖s, together with their corresponding value hypervectors V𝑓𝑖 s,
pre-stored in the item memory. By binding F andV via:

𝑠𝑔𝑛(
∑︁
𝑖

F𝑖 ×V𝑓𝑖 ),

we can obtain the encoded input sampleH . In training, allHs be-
longing to the same class would be summed and averaged to obtain
the class hypervectors, stored in the associative memory. In the
inference stage, the testing data would be transformed into query
hypervectors using the same encoder. Then a similarity checker like
the Hamming distance would be applied in the associative memory
between each trained class hypervectors and the query hypervector.
The class label with the closest distance would be finally returned.
Due to the simplicity of bitwise operations, the HDC has achieved
success on platforms like FPGA and ASIC [6].

However, the large model size resulted from the ultra-high di-
mensions of the data representation in the HDC compromises its
wide adoption on tiny devices, which are usually under severe
resource consumption constraints. On the other hand, although
numerous endeavors have been put to improve the accuracy of the

HDC classifier [19], there is still a large accuracy gap between the
HDC models and a simple modern neural network model like the
Multi-Layer Perceptron (MLP).

Low-Dimensional Computing (LDC): To overcome the fun-
damental limitations of low accuracy and inference efficiency in
HDC, the low-dimensional computing (LDC) classifiers are pro-
posed as a brain-inspired substitute of HDC classifiers with higher
accuracy and order-of-magnitude better on-device inference effi-
ciency, especially for tiny devices with intelligent needs. Unlike
HDC, LDC classifiers utilize a rigorous and systematic training
procedure, where the value vectorsVs and feature vectors F s are
explicitly optimized rather than being randomly generated. On the
other hand, the required order of magnitude of the involved vec-
tors dimension size in the LDC is only a few to tens to achieve a
higher accuracy compared to the state-of-the-art HDC, e.g. 87.38%
w/ 𝐷 = 8, 000 vs. 91.22% w/ 𝐷 = 4/64 on the MNIST dataset [11].

The blue and orange boxes with dashed lines in Figure 1 pro-
vides an overview of the LDC model architecture. The ValueBox
is an encoding network. It maps the feature values F𝑖s of an input
sample into a bipolar value vectorV𝑓𝑖 . Followed is the feature layer,
which is essentially a sparse binary neural network to bind the
bipolar feature valuesV𝑓𝑖 with the corresponding feature vectors
F𝑖 through the Hadamard product. The last class layer equivalently
performs similarity checking, where the weights of the layer are
collections of all class vectors. This layer outputs the score product
for each class, and the class label with the highest score is taken
as the classification result 𝑦. It is worth noting that the inference
in an LDC classifier is fully binary as the non-binary weights of
ValueBox is not needed after training. Compared to HDC, LDC
classifiers have been demonstrated as a more promising alternative
due to its lightweight model and high inference accuracy to support
intelligent agents in the tiny devices.

3 PROBLEM SETUP
We focus on the few-shot supervised learning in this work. Super-
vised learning learns a model that maps input data points 𝑥 ∈ X
which have a true label 𝑦 ∈ Y to predictions 𝑦. A task T𝑖 is com-
posed of (X,Y, 𝐿, 𝑞), where 𝐿 is the task-specific loss function and
𝑞 is the data distribution of T𝑖 . We assume all data points are drawn
i.i.d. from q.
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Given distributions over a set of tasks 𝑝 (T ), we aim at learning
a general representation function 𝑓 (·;𝜃 ) using a handful of data
points of each class from them. The 𝑓 (·;𝜃 ) is essentially a repre-
sentation learning network parameterized by 𝜃 , which can then
fast adapt to previously unseen tasks in new devices by learning
another adaption function 𝑔(𝑓 (𝜃 );𝜙) with little local data examples
and (closed-form) gradient updates on 𝜙 with minimal computation.
In a nutshell, we propose to train the LDC backbone as a reusable
template to fast adapt to new tasks on tiny devices in the end.

With the goal to obtain a good initialization, we train the LDC
model in a meta-learning manner. Our MetaLDC consists of two
phases: meta-training and meta-testing (also referred to as fast
adaption). We meta-train on 𝑚 tasks 𝑆𝑖 ∼ 𝑝 (T ), 𝑖 = 1, · · · ,𝑚 to
learn the representation, and meta-test on a different task𝑇 ∼ 𝑝 (T ).

In the training process of MetaLDC, we introduce two updating
loops as shown in our Algorithm 1. In a nutshell, the inner loop
updates model parameters with respect to an individual task using
𝐾 data points by one (or few) gradients steps, while the outer loop
updates the entire model’s parameters with regard to the loss after
the inner loop updates.

In the fast adaption stage, we apply𝑀-shot 𝑁 -way evaluation,
where 𝑁 is the number of classes per task. We would use𝑀 data
examples from each class of the new task to update the partial
model, and then carry out the evaluation on the testing dataset
from the new task.

4 THE DESIGN OF METALDC
In this section, we present our architecture, referred to as the Met-
aLDC. It uses a carefully-crafted interleaved training algorithm to
train the LDC classifier. The primary objective is to achieve fast
adaption to unseen (but related) tasks on edge tiny devices by updat-
ing partial learned model parameters with minimal computational
cost. We provide an overview of the MetaLDC in Figure 1.

4.1 Meta Training
The original MAML [12] takes the training-and-fine-tuning pipeline,
which optimizes 𝜃 and 𝜙 together in both meta-training and fast
adaption. But, updating the non-binary weights 𝜃 can be too compu-
tationally expensive for tiny devices. Thus, in MetaLDC, we instead
use the training-and-probing pipeline. The key idea of MetaLDC
is to separate the representation function 𝑓 (·;𝜃 ) and the prediction
function 𝑔(·;𝜙) for meta-training and fast adaption on tiny devices.
Thus, we only optimize the representation function 𝑓 (·;𝜃 ) in the
meta-training, and optimize the prediction function 𝑔(·;𝜙) in fast
adaption.

Specifically, in the meta-training, for each update step, we first
learn a randomly initialized prediction function 𝑔(·;𝜙) to classify
examples based on a given representation 𝑓 (·;𝜃 ). An updated pa-
rameter 𝜙𝑖 is obtained using 𝐾 examples from the sampled tasks 𝑆𝑖
through one (or more) gradient steps w.r.t. the loss on the sampled
tasks. We then resample 𝐾 new examples from each class in 𝑆𝑖 and
optimize the whole model w.r.t. (𝜃, 𝜙) across those tasks from 𝑝 (T ).
The full algorithm is outlined in the Algorithm 1, where 𝛼 , 𝛽 repre-
sent tunable step size. Intuitively, the 𝜙 serves as the task-specific
embedding, which modulates the behaviour of the model. In the
outer loop updates, by considering how the errors on specific task

changes with respect to the updated model parameters, we expect
to obtain a model initialization such that small changes in the model
parameters could lead to substantial performance improvement for
any task. This improvement has been empirically attested in our
evaluations of section 5.

Algorithm 1 MetaLDC— Training
Input: T : the whole task set; 𝑡 : number of outer gradient steps;𝑚:
Number of inner gradient steps (i.e., number of sampled
meta-training tasks); 𝛼 , 𝛽 : step size parameters.
Output: 𝜃 , 𝜙
1: Randomly initialize parameters 𝜃, 𝜙
2: for 𝑗 in 1, 2, ..., 𝑡 do ⊲ outer loop
3: for 𝑖 in 1, 2, ...,𝑚 do ⊲ inner loop
4: Sample batches 𝐵𝑖 ⊲ each batch 𝐵𝑖 contains 𝐾

examples for each class in 𝑆𝑖 ∼ 𝑝 (T )
5: Derive task-specific 𝜙 ′

𝑖
: 𝜙 ′

𝑖
← 𝜙 − 𝛼∇𝜙𝐿(𝐵𝑖 ;𝜃, 𝜙)

6: Re-sample another batch 𝐵′
𝑖
of the same batch size

7: end for
8: Update both parameters 𝜃 , 𝜙 : (𝜃, 𝜙) ← (𝜃, 𝜙) −
𝛽∇𝜃,𝜙

∑𝑚
𝑖=1 𝐿(𝐵′𝑖 ;𝜃, 𝜙

′
𝑖
)

9: end for
10: Return 𝜃 , 𝜙

It is also worth noting that as the meta training involves poten-
tially many tasks to learn a good initialization, the whole process
of meta-training can be done on either the GPU or a powerful
CPU. In contrast, adaptation is performed on the local tiny devices
with minimal computation cost as we explained in the subsequent
subsections.

4.2 Fast Adaption
Given the learned initialization, we can fast adapt to a new task
𝑇𝑖 under a 𝑀-shot 𝑁 -way setup. To adapt to a new task on each
tiny device, we freeze the parameters of the representation network
𝜃 and only update the class layer’s parameter 𝜙 by using only a
few samples. By this means, we preserve the broad knowledge
learned from various tasks in the representation network 𝑓 (·;𝜃 ).
Moreover, updating the last layer 𝜙 rather than the entire model is
far less costly and therefore more affordable for tiny devices which
are usually with stringent resource constraints. Furthermore, we
use the hinge loss instead of the commonly used cross-entropy for
gradient updates, as the former requires less complicated arithmetic
operations. Instead of requiring the model to compute gradients by
itself, we feed the gradients of the hinge loss in a closed-form to
the model directly using the Eqn. (1):

∇𝑤𝑗
𝐿𝑖 =

{
−∑𝑗≠𝑦𝑖

1(𝑤𝑇
𝑗
𝑥𝑖 − 𝑤𝑇

𝑦𝑖
𝑥𝑖 + Δ > 0), 𝑗 = 𝑦𝑖

1(𝑤𝑇
𝑗
𝑥𝑖 − 𝑤𝑇

𝑦𝑖
𝑥𝑖 + Δ > 0) · 𝑥𝑖 , 𝑗 ≠ 𝑦𝑖 ,

(1)

where Δ is the desired margin,𝑤𝑦𝑖 is the parameters corresponding
to the correct class, whereas 𝑤 𝑗 is the rest of parameters, and 𝑥𝑖
is the vector representation for the data example 𝑖 . We outline the
fast adaption process in the Algorithm 2.

Interestingly, compared to fine-tuning entire parameters of all
layers in the fast adaption, our experiments results have shown the
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Algorithm 2MetaLDC - Fast adaption to a new task 𝑇
Input: 𝜃 , 𝜙 : learned model parameters; 𝑡 : Number of gradient
steps; 𝛾 : step size parameters.
Output: 𝜙
1: Sample𝑀 examples for each class of 𝑇
2: for 𝑗 in 1, 2, ..., 𝑡 do
3: Update 𝜙 by: 𝜙 ← 𝜙 − 𝛾∇𝜙𝐿(·;𝜃, 𝜙)
4: end for
5: Return 𝜙

accuracy achieved by the MetaLDC, which only updates last layer’s
parameters, is not lower. This can be attributed to the alleviated
meta over-fitting issue, as updating the entire model using a few
data points from a task in the adaption stage can easily cause the
model to overfit to this partial data distribution.

5 EVALUATION
In this section, we empirically evaluate the performance of Met-
aLDC compared to several baselines on both vision and non-vision
datasets. We have considered various performance perspectives,
including adaption accuracy on unseen tasks with a small amount
of data points, robustness against hardware random bit errors, the
latency and hardware energy consumption, as well as the change
of model’s accuracy w.r.t. the hyperparameters values selection.
Additionally, we have also evaluated the efficacy of the learned
representation 𝑓 (·;𝜃 ).

5.1 Setup
We describe the datasets and tasks, baselines, as well as implemen-
tation details here.

Datasets. We have leveraged two benchmarking datasets from
both the vision and non-vision regimes. One is the Rotated MNIST,
which is originated from the MNIST [7]. In Rotated MNIST, each
image contains the digit rotated by a certain degree. The other is re-
ferred to as Split ISOLET, derived from the UCI ISOLET dataset [29].
The ISOLET contains 26 classes in total, and we divide them into
separate tasks, where each task contains 4 unique randomly sam-
pled classes.

Training and Evaluation Tasks. In the Rotated MNIST, the ro-
tation degree of tasks we use to train the methods are between
[10◦, 20◦). The learned models are then evaluated on the testing
dataset of RotatedMNISTwith rotation degree from {0◦, 2◦, 4◦, 6◦, 8◦}.
For the Split ISOLET, we use 20 classes from the ISOLET to generate
the training tasks, while the remaining classes form the candidate
classes pool to produce evaluation tasks.

Baselines. We compare MetaLDC with both HDC methods and
other LDC-based models. In the Pretrained LDC method, we pre-
train the LDC model with standard supervised learning using the
whole training datasets from the training tasks. Then we also use
the Algorithm 2 for fine-tuning. Another baseline we designed is
the MetaLDC-full. The training algorithm of MetaLDC-full is the
same as MetaLDC, as shown in the Algorithm 1. The difference is
in the fine-tuning stage, where we update the parameters of the

entire model, not only the last layer for the MetaLDC-full. Note
that MetaLDC-full is prohibitively expensive for tiny devices, as
it requires keeping the entire weights of the LDC model and full
backpropagation calculations throughout the fast adaptation pro-
cess. Besides the LDC variants, we also compare with a SOTA HDC
method, the HDC with retraining. The HDC w/ retraining would
give more weights to a misclassified sample in its correct class
hypervector and subtracted from the wrong class hypervector in
training to improve the HDC classification accuracy [17]. We set
𝐷 = 8, 000 for the HDC models in our experiments following the
setup of [11]. In addition, we put the multi-layer perceptrons (MLP)
here as an upper bound, although it is not feasible to be deployed
on extremely resource-constrained tiny devices. In the MLP, we
use Algorithm 1 for training and Algorithm 2 for fast adaption.

Implementation Details. In the meta training stage, for the Ro-
tated MNIST, we train the model for 60 epochs with batch size of
10. In the Split ISOLET, we use 30 epochs w.r.t. its smaller dataset
size. In the Rotated MNIST experiments, we used 𝐾 = {1, 5} for
gradient updates in the meta learning involved methods, while set-
ting 𝐾 = 1 in the Split ISOLET. We train all models with the Adam
optimizer [20] except the HDC classifier, which is not feasible to fit
in any standard training optimizer.

In the fast adaption stage, we set𝑀 = 10 for the Rotated MNIST
and𝑀 = 5 in Split ISOLET, to update 𝜙 . To ensure fair comparison,
the same data points are used across different methods. Note that
we don’t fine-tune the HDC classifier as there seems no feasible way
to update the learned hypervectors which are essentially composed
of zeros and ones for the new incoming data examples.

5.2 Testing Accuracy
We show our evaluation results on the Rotated MNIST in Figure 2.
From Figure 2, we can see that MetaLDC outperforms other base-
lines across all evaluation tasks. We observe that the MetaLDC has
achieved higher accuracy compared to the MetaLDC-full, which
updates the entire model parameters to adapt to a new task in the
fine-tuning stage. We attribute this to over-fitting, as the entire
model focuses on learning a very small amount of data from the
task. In comparison, MetaLDC, which only updates the last layer
while keeping the former layers untouched, has alleviated this
over-fitting issue to certain extent. We can also observe that as the
rotation degree of the evaluation data becomes larger, the testing
accuracy of the MetaLDC also increases due to higher similarity
between the training and the evaluation tasks.

For the Split ISOLET, the evaluation results are reported in the
Figure 2. Based on the Figure 2, the accuracy achieved by MetaLDC
is the highest on different tasks. The second highest is theMetaLDC-
full, which is not as computationally efficient as the MetaLDC for
tiny devices.

5.3 Robustness against Hardware Bit Errors
One of the most appreciated merits of the HDC-based models is
the robustness against random bit errors on the hardware. The
plain LDC model has been shown that it can achieve comparable
robustness due to the uniform distributed information in each com-
pact vector, although the dimensionality of the vector is largely
reduced [11]. Our empirical results in Figure 3 have shown that
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Evaluation Tasks

Methods 𝐾-shot 𝑇1 : 0◦ 𝑇2 : 2◦ 𝑇3 : 4◦ 𝑇4 : 6◦ 𝑇5 : 8◦

HDC w/ retraining - 76.74±0.74 77.75±0.65 77.01±0.57 77.87±0.44 79.13±0.53
Pretrained LDC - 78.25±2.37 78.26±3.03 78.67±2.97 79.25±2.50 80.89±1.76

MetaLDC-full 𝐾 = 1 80.03±0.84 81.01±0.57 82.37±0.81 84.04±0.47 85.34±0.23
𝐾 = 5 80.35±0.66 81.78±0.53 83.25±0.57 84.97±0.18 86.31±0.05

MetaLDC 𝐾 = 1 82.78±0.97 82.99±1.07 84.84±1.22 86.33±0.55 87.97±0.42
𝐾 = 5 82.83±0.71 83.11±0.58 85.74±0.83 86.54±0.23 88.01±0.36

Upper Bound 𝐾 = 1 87.00±0.54 87.69±0.42 88.77±0.33 90.19±0.33 92.94±0.19
𝐾 = 5 87.53±0.43 87.74±0.39 89.01±0.27 90.87±0.29 93.11±0.11

Ac
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cy

Task 1 Task 2

Task 3

84.17 88.81

Pretrained LDCHDC w/ retraining
MetaLDC MetaLDC-full 

79.17 81.77 82.81 83.31 84.11 87.71
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Figure 2: Left: Accuracy of MetaLDC compared to other methods on the Rotated MNIST. Right: Accuracy of MetaLDC compared
to other approaches on the Split-ISOLET. Red marks the results of the highest accuracy, and blue marks the results of the
second highest.

Figure 3: Bit error robustness of different models on the
MNIST testing dataset.

MetaLDC exhibits even stronger robustness than other methods
when the rate of bit error increases. The reason behind the improve-
ment could be that a general representation is learned from a set of
different tasks via our meta training process. The broad prior knowl-
edge stored in the reusable template helps in adapting to tasks with
perturbation, and fighting against the random bit errors. Compared
to the pretrained LDC which also preserve acquired knowledge,
MetaLDC has shown slightly slower decline of accuracy.

5.4 Inference Cost on Hardware
Here, we evaluate the inference efficiency of MetaLDC and HDC w/
retraining following the same hardware pipeline setup as in the [11].
The hardware platform we use is the Zynq UltraScale+, where we
transform the bipolar values {1, -1} to {0, 1} in the implementation.
In the experiment, we limit the resource usage (e.g., lookup table
(LUT) < 10k) to approach the common practice in tiny devices.

We report the numerical results in the Table 1. From the Ta-
ble 1, we can see that the LDC models are at least 100𝑥 faster than
HDC w/ retraining classifiers. The model size based on LDC is 150𝑥

smaller than the HDC ones. The energy consumption of the MAML
LDC (tiny) are less than 100𝑛𝐽 in the evaluation datasets, which
has demonstrated great improvement on hardware acceleration
compared to the HDC-based models. Note we don’t measure the
MLP-based model cost here, as its inference requires matrix mul-
tiplication via floating-point operators rather than simple binary
arithmetic, making it too resource-intensive to run on a tiny device.
On top of that, the MLP architecture cannot be trivially supported
by the FPGA platform due to the floating point computation [13],
and inter-platform comparison of algorithm performance is con-
sidered neither instructive or fair. Even though there is MLP with
the fix-point format which could be implemented on FPGA, the
required utilization of DSP and other resources are still tremen-
dous to carry out the involved matrix multiplication, far above the
resource budget of a tiny device.

Table 1: Inference cost comparison between MetaLDC and
the HDC w/ retraining on the Zynq UltraScale+.

DataSet Model Size (KB) Latency (us) Energy (nJ)

R-MNIST MetaLDC 6.48 3.99 64
HDC 1050 499 36926

S-ISOLET MetaLDC 5.10 3.13 38
HDC 877 388 29488

5.5 Hyper-parameter Ablation Studies
To showcase the performance of MetaLDC with different choice of
hyperparameters, we conduct the ablation study for 𝐾 , the number
of data examples to train the model; and𝑀 , the number of samples
we used from each class of a new task to update 𝜙 in the fast
adaption stage. Depending on different dataset size, for the Rotated
MNIST, we set the 𝐾 = {1, 5, 10, 20, 40}, while 𝐾 = {1, 2, 3, 4, 5} for
the Split-ISOLET dataset. The 𝑀 is set as {10, 50, 100, 150} in the
Rotated MNIST, and {1, 5, 10, 15} in the Split ISOLET, respectively.
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Figure 4: Hyper-paramter ablation study on different datasets w.r.t. K, the number of examples sampled from each class in the
meta-training; and M, the number of examples sampled from each class of a new task in the fast adaption.

MetaLDC
MetaLDC-NFT

Figure 5: Accuracy comparison between MetaLDC and
MetaLDC-NFT on S-ISOLET and R-MNIST with 𝐾 = 1.

The evaluation dataset we used in the Rotation MNIST is the the
original MNIST, while the images in the training data has rotation
degree in [10, 20). In the Split-ISOLET, we use the Task 1 as the
evaluation task.

The results are provided in Figure 4. We observe that as the
values of 𝐾 and 𝑀 increase, the accuracy of both MetaLDC and
MetaLDC-full has improved. We also notice that the accuracy gap
between MetaLDC-full and MetaLDC become smaller as 𝐾 or 𝑀
increase, especially on the Split ISOLET dataset. We attribute the
performance increases of MetaLDC-full to larger percentage of data
points sampled from the task to update the model, which gradually
diminishes the over-fitting effect.

5.6 Efficacy of Learned Representation
To study the efficacy of learned representation by our meta-training
process, we have designed another method, referred to as the
MetaLDC-NonFineTuning (MetaLDC-NFT). In this method, we use
the Algorithm 1 to train the LDC model. We then test its accuracy
on the new task without any fine-tuning. As shown in the Figure 5,
we can see that the accuracy gap between MetaLDC-NFT and Met-
aLDC is within 5% on the Split ISOLET and 10% on the Rotated
MNIST, which has reflected our Algorithm 1 has produced a good
initialization to some extent.

6 RELATEDWORKS
By distilling the learning experience from a broad set of related
tasks, MAML [12] has achieved great success in the fast adaption

regime [8, 14, 30, 34, 38]. The [22, 37] have proposed distributed
collaborative frameworks to leverage knowledge between egde
nodes via MAML. To reduce the computational cost, the [36] has
presented a divide-and-conquer approach where the linear approxi-
mation is utilized to estimate the Hessian, while [28] has discussed
using MAML with synthetic gradients in a feed forward manner
for deep neural networks. However, most approaches are still quite
costly, not viable for tiny devices with severe resource constraints.

HDC has been known as an efficient alternative to expensive
deep neural networks for tiny devices [3, 4, 9, 10, 15, 16, 27, 35].
The study [9] has proposed to use vector quantization to further
reduce the model size. Besides, some works have optimized HDC’s
encoding and training to improve its accuracy on a single data dis-
tribution [18]. Nonetheless, the required HDC model size to obtain
an acceptable accuracy is still prohibitive large for tiny devices.
More recently, LDC has been studied to significantly improve the
efficiency of HDC [11], where the encoded vectors are only tens,
yet the accuracy is even higher. Nevertheless, fast adaption problem
to unseen but related tasks has not been well addressed in either
HDC or LDC.

The fast adaption issue has become even more pressing for edge
tiny devices due to their low latency tolerance and limited computa-
tional power [2, 24, 26, 31, 32]. The [21] has proposed a framework
based on neural architecture search to find the optimal neural archi-
tecture under resource constraints of different tiny devices, whereas
the MetaLDC does not require additional search efforts but provide
a reusable lightweight template for unseen tasks.

7 CONCLUSION
In this paper, we propose MetaLDC, a LDC-based approach to fast
adapt to unseen tasks via interleaved meta training for resource-
constrained tiny devices. In MetaLDC, the LDC architecture is first
trained across a set of different tasks, where we separately train the
task-specific parameters 𝜙 in the inner loop of the meta-training
algorithm. The learned model can then fast adapt to a new task
by only updating the last layer using a handful of data points,
while preserving learned prior knowledge in the former layers. Our
empirical results have shown that our method has achieved higher
accuracy compared to other HDC methods and LDC variants.
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